Abstract

Neurons in the auditory cortex (AC) receive convergent excitatory and inhibitory inputs from the lower auditory nuclei. Interaction between these two opposing inputs shapes different response properties of AC neurons. In this study, we examined how this interaction might affect the frequency tuning curves (FTCs), number of impulses and latency of AC neurons in the big brown bat, Eptesicus fuscus, using a probe (excitatory tone) and a masker (inhibitory tone) under different stimulation conditions. Excitatory FTCs of AC neurons were either V-shaped, closed (i.e. upper threshold) or double-peaked. Inhibitory FTCs were obtained either at both flanks or only at the low or high flank of excitatory FTCs. Application of bicuculline, an antagonist for γ-aminobutyric acid A receptors, produced expansion of excitatory FTCs into predrug inhibitory FTCs. Inhibition of probe-elicited responses occurred when a masker was presented at certain intertone intervals. Maximal inhibition typically took place when a masker was presented within 4 ms prior to the probe. During maximal inhibition, a neuron had the minimal number of impulses and the longest response latency. Inhibition became stronger with increasing masker intensity but became weaker with increasing intertone interval. Biological significance of these data is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call