Abstract
Cyclodextrins (CDs) are nanostructures widely applied in biotechnology and chemistry. Owing to partially hydrophobic character, CDs interact with biological membranes. While the mechanisms of CDs interactions with lipids were widely studied, their effects on proteins are less understood. In the present study we investigated the effects of beta cyclodextrin (betaCD) on GABA(A) receptor (GABA(A)R) gating. To reliably resolve the kinetics of conformational transitions, currents were elicited by ultrafast gamma-aminobutyric acid (GABA) applications to outside-out patches from rat cultured hippocampal neurons. betaCD increased the amplitude of responses to saturating GABA concentration ([GABA]) in a dose-dependent manner and this effect was accompanied by profound alterations in the current kinetics. Current deactivation was slowed down by betaCD but this effect was biphasic with a maximum at around 0.5 mM betaCD. While the fast deactivation time constant was monotonically slowed down within considered betaCD concentration range, the slow component first increased and then, at millimolar betaCD concentration, decreased. The rate and extent of desensitization was decreased by betaCD in a dose-dependent manner. The analysis of current responses to nonsaturating [GABA] indicated that betaCD affected the GABA(A)R agonist binding site by slowing down the unbinding rate. Modulation of GABA(A)R desensitization and binding showed different concentration-dependence suggesting different modualtory sites with higher affinity of the latter one. All the betaCD effects were fully reversible indicating that cholesterol uptake into betaCD was not the primary mechanism. We conclude that betaCD is a strong modulator of GABA(A)R conformational transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.