Abstract
Recent reports suggest that Th17 immunity and bone marrow-derived CD34+ fibrocytes contribute to the pathogenesis of Graves' orbitopathy (GO). This study investigated interactions between Th17 cells and fibrocytes in GO inflammation in Chinese subjects. Th17 cells and fibrocytes were derived from blood samples from Chinese GO patients and healthy controls. Proportions and phenotypes of Th17 cells, regulatory T cells (Tregs), and fibrocytes were examined by flow cytometry. Exogenous IL-17A was used to study inflammatory activity of fibrocytes from GO patients and control subjects. Coculture, quantitative RT-PCR, Luminex, and transwell assays were performed to investigate the relationship between Th17 cells and fibrocytes. CC-chemokine receptor 6 (CCR6+) Th17 cells were increased in both active (P < 0.001) and inactive (P < 0.05) GO patients, compared with healthy controls. There was a positive correlation between number of CCR6+ Th17 cells and GO clinical activity score (P < 0.0001, r = 0.8176). Further, CD34+ fibrocytes were increased in GO patients, with increased expression of IL-17RA (P < 0.05), CD80 (P < 0.05), and CD86 (P < 0.05). A decreased population of effector Treg cells (P < 0.01) and increased CTLA-4 expression on naïve Treg cells (P < 0.05) were observed in GO patients. IL-17A stimulated cytokine production in fibrocytes; GO fibrocytes exhibited more robust production than normal fibrocytes. Autologous Th17 cells promoted inflammatory and antigen-presenting functions of GO fibrocytes; conversely, fibrocytes enhanced Th17 cell-function and recruited Th17 cells in a macrophage inflammatory protein 3 (MIP-3)/CCR6-dependent manner. The crosstalk between CCR6+ Th17 cells and fibrocytes plays a role in the pathogenesis of GO. Suppressing these interactions may be a candidate molecular target for therapeutic approaches of GO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.