Abstract

Sonoporation has been widely accepted as a significant tool for gene delivery as well as some bio-effects like hemolysis, bringing in high demands of looking into its underlying mechanism. A two-dimensional (2D) boundary element method (BEM) model was developed to investigate microbubble-cell interaction, especially the morphological and mechanical characteristics around the close-to-bubble point (CP) on cell membrane. Based on time evolution analysis of sonoporation, detailed information was extracted from the model for analysis, including volume expansion ratio of the bubble, areal expansion ratio of the cell, jet velocity and CP displacement. Parametric studies were carried out, revealing the influence of different ultrasound parameters (i.e., driving frequency and acoustic pressure) and geometrical configurations (i.e., bubble-cell distance and initial bubble radius). This model could become a powerful tool not only for understanding bubble-cell interactions, but also for optimizing the strategy of sonoporation, such that it could be safer and of higher efficiency for biological and medical studies especially in clinics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.