Abstract

Abstract This research was initiated to determine whether the interaction at the interface between the surface of finely divided solids, such as carbon black, and cured elastomers is primarily physical or chemical in nature. Further, it was desired to correlate some physical property of the reinforced stock with the surface properties of the solid pigment. Through an examination of the thermodynamic changes accompanying the deformation of loaded stocks it is shown that physical adsorption of the van der Waals type occurring at the interface between pigment and polymer is inadequate to account for the experimental observations. However, if chemical bonding occurs at the interface between polymer and pigment, then the entropy of deformation of the stock may be correlated with the extent of this bonding. By a calorimetric method it was demonstrated that the surface of a carbon black particle contains sites that react with bromine to liberate the same amount of heat as low molecular-weight olefins. It is, therefore, proposed that a carbon black particle be considered as a disordered agglomerate of polymeric benzenoid type molecules which contain around their perimeters various functional groups. The existence of olefinic-type unsaturation on the surface of carbon blacks suggests strongly that, in the case of carbon blacks, the polymer and pigment are combined chemically through pigment-sulfur-polymer bonds into a continuous three-dimensional cross-linked matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.