Abstract

Abstract Carbon blacks (CBs) have been widely used as reinforcing materials in advanced rubber composites. The mechanical properties of CB-reinforced rubber composites are mostly controlled by the extent of interfacial adhesion between the CBs and the rubber. Surface treatments are generally performed on CBs to introduce chemical functional groups on its surface. In this study, we review the effects of various surface treatment methods for CBs. In addition, the preparation and properties of CB-reinforced rubber composites are discussed. Key words: rubber, carbon blacks, surface treatments, interfacial adhesion 1. Introduction Rubber exhibits superior viscoelastic properties and improves the lifespan of products which continue to be transformed. At first, natural rubber (NR), which is composed of isoprene monomers, was obtained from nature. Later, as industries developed, synthetic rubbers were produced to supplement the production of NR. In particular, studies have been conducted on a new kind of rubber that is made of butadiene, namely, a copolymer of acrylonitrile butadiene rubber (NBR) and styrene butadiene rubber (SBR) as shown in Fig. 1 [1-6].However, rubber lacks sufficient physical strength, which makes it unsuitable for various applications. For this reason, fillers, such as carbon materials and silica, are added to rubber to form rubber composites with improved mechanical behaviors [7-27].In recent years, carbon materials have been widely used as reinforcing agents in high-per -formance composite materials [28-35], adsorbents [36], electrochemistry [37], and energy storage materials [38]. Among various carbon materials used as reinforcing agents, carbon blacks (CBs) are the oldest carbon derivatives produced by the incomplete combustion of petroleum products, such as fluid catalytic cracking tar and coal tar. Moreover, the particle size, structure, and surface conditions of CBs (Fig. 2) make them popular reinforcing agents [19-21].CBs contain more than 95% amorphous carbon, and their particle sizes vary from 5 to 500 nm. The physical properties of CBs vary with the production method and the raw materials used, which makes them suitable for applications in various fields. The mixing ratio of CBs in automobile tires is 50%, while that in other rubber products is approximately 30%. Rela-tively large amounts of reinforced CBs should be added to NR to attain acceptable mechani-cal properties. Cohesion occurs between CB particles due to chemical and physical bonds. The chemical composition of CB aggregates is 90%–99% carbon, 0.1%–1.0% hydrogen, 0.2%–2.0% oxygen, and a small amount of sulfur and ash. In addition, oxygen-containing functional groups, such as the carboxyl, hydroxyl, and quinine groups, exist on the surfaces of CBs. These are called surface functional groups. These surface functional groups increase the chemical and physical bonding between the CBs particles and the rubber matrix [39-43]. Therefore, the addition of CBs to rubber results in the formation of composites with im-

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call