Abstract

ABSTRACTIn this study, the imidazole derivatives such as 2-undecylimidazole (UI) and 2-mercapto-1-methylimidazole (MMI) are utilized to work as novel additives for modifying styrene butadiene rubber (SBR)/carbon black (CB) composites. The imidazole groups on UI and MMI can be hydrogen-bonded with oxygen-containing groups on the surface of CB, and the undecyl or thiol groups can be reacted with the SBR chains via physical entanglement or thiol-ene chemistry. The results demonstrate that the static and dynamic mechanical performances of SBR/UI and SBR/MMI composites are significantly improved over those of the SBR composite. Compared with blank SBR composite, the tensile strength, modulus at 300% elongation, and tear strength of SBR/MMI-1.0 are greatly improved by 30, 42, and 18%, respectively. The rolling resistance of SBR/MMI-1.0 is reduced by 10.4%, and the wet grip property is increased by 4.0%. The superiority of appropriate MMI content (1.0 phr in our work) in the enhancement for the overall performance of SBR composites is attributed to the promotion of a good dispersion of CB throughout the SBR matrix and the enhanced interfacial interactions between CB and the SBR matrix. This work may enlarge the potential applications of modified CB to fabricate high-performance rubber composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call