Abstract

BackgroundEosinophils in asthmatic airways are associated with risk of exacerbations. The most common cause of asthma exacerbations is viral respiratory infections, particularly human rhinovirus (HRV). ObjectiveTo determine the mechanism by which eosinophils may influence virus-induced responses. MethodsWe used an in vitro coculture model of primary human eosinophils and the BEAS-2B epithelial cell line either stimulated with HRV1A infection or polyinosinic–polycytidylic acid (poly[I:C]). The messenger RNA (mRNA) expression of interferon (IFN) β1 and IFN-λ1 was assessed by quantitative reverse-transcriptase polymerase chain reaction and the protein level of IFN- λ1 by enzyme-linked immunosorbent assay. ResultsBoth poly(I:C) and HRV1A infection induced BEAS-2B expression of IFN-β1 and IFN-λ1 mRNA. Coculture of eosinophils resulted in suppression of poly(I:C)-stimulated IFN-β1 and IFN-λ1 mRNA expression (2.5-fold and 3.6-fold less, respectively). Separation of cells did not block eosinophil regulatory activity. Coculture of eosinophils with HRV1A-infected BEAS-2B cells also suppressed IFN-β1 and IFN-λ1 mRNA (5.7-fold and 5.0-fold less, respectively) and reduced IFN-λ1 protein secretion (1.6-fold decrease). This corresponded to a 34% increase in the quantity of HRV1A virus RNA on coculture with eosinophils. Recombinant transforming growth factor β suppressed IFN-λ1 from HRV1A-infected BEAS-2B cells. Coculture of eosinophils and BEAS-2B cells induced transforming growth factor β secretion, which may mediate suppression of HRV-induced interferon expression. ConclusionEosinophils suppressed HRV-induced expression of interferons from epithelial cells, resulting in increased quantity of HRV. This represents one mechanism for interaction between allergic inflammation and innate immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.