Abstract

The results of numerical modeling of the time-dependent flows of a viscous heat-conducting gas occurring in the region of interaction between an external inviscid flow and a laminar boundary layer near a zone of local energy supply at high subcritical Reynolds numbers are presented. The solution of the Navier-Stokes equations is constructed on the basis of the method of matched asymptotic expansions. Numerical solutions of the nonlinear boundary-value problem describing the flow in the wall region of the boundary layer are given in similarity variables. It is shown that time- and space-localized energy supply results in the formation of a self-consistent flow disturbance, whose downstream propagation is accompanied by a disturbance amplitude growth during a short time interval, even after the energy supply has stopped. Calculations of the flows induced by two heat sources placed in tandem make it possible to conclude that the time lag for the second energy supply zone and the distance between the sources can be so chosen that superposition of the disturbances induced by the first and second sources leads, due to nonlinear effects, to a considerable increase in the amplitude of the total flow disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.