Abstract

The share of renewable energy sources in the primary energy use is increasing worldwide. Given the intermittency of the energy supply from renewables, it is important to increase flexibility in the system to respond to the imbalances between energy demand and supply. Several flexibility options such as power storage and energy integration are currently in use, mostly at small scales. The increased energy supply from renewables and the flexibility solutions can influence the production planning of existing thermal energy conversion plants. In this study, integration of energy technologies including a hydrotreated pyrolysis oil production integrated with existing CHP plants is investigated as a flexibility solution. The system interacts with potential power generation from rooftop PV systems integrated with power-to-hydrogen storage. A cost-optimization model is developed using MILP method. The study focuses on the system flexibility and operational strategy of the existing CHP plants considering market trends, climate changes, and future energy developments with increased penetration of heat pumps and electric vehicles but less fossil fuels use. The results indicate that the suggested integrated system can increase the local energy supply by 33 GWh. Moreover, the power-to-hydrogen storage and onsite hydrogen use can increase the share of renewables in energy supply by 6%. Optimization of the developed scenarios for future energy-related changes indicates that the market trends could significantly reduce the performance of the system by 21% but increase the penetration of renewables in the system by 8%. Overall, scenario analysis shows the potential of using such a polygeneration system for flexible energy supply including existing CHP plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call