Abstract

A numerical method for the integration of the singular integral equation resulting from the interaction of a surface crack with a subsurface inclusion is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three parts: A singular term due to the load discontinuity imposed by the inclusion, a square root singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly the well behaved residual dislocation density function only has to be determined numerically, together with the intensity of the square root singular term. The method is applied to the determination of the stress intensity factor for a surface crack growing towards and through a circular inclusion whose diameter is equal to the distance from the free surface, and to the determination of the characteristic stress intensity factors when the crack enters the inclusion and leaves it for arbitrary ratios between the inclusion diameter and the distance from the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.