Abstract

Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by cut-in. To improve the safety of autonomous vehicles in the mixed traffic, this study proposes a cut-in prediction and risk assessment method with considering the interactions of multiple traffic participants. The integration of the support vector machine and Gaussian mixture model (SVM-GMM) is developed to simultaneously predict cut-in behavior and trajectory. The dimension of the input features is reduced through Chebyshev fitting to improve the training efficiency as well as the online inference performance. Based on the predicted trajectory of the cut-in vehicle and the responsive actions of the autonomous vehicles, two risk measurements are introduced to formulate the comprehensive interaction risk through the combination of Sigmoid function and Softmax function. Finally, the comparative analysis is performed to validate the proposed method using the naturalistic driving data. The results show that the proposed method can predict the trajectory with higher precision and effectively evaluate the risk level of a cut-in maneuver compared to the methods without considering interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call