Abstract

AbstractListeria spp. are ubiquitously found in both the natural and the food processing environment, of which Listeria monocytogenes is of an important health risk. Here, we report on the formation of single and mixed species biofilms of L. monocytogenes/Listeria innocua and Lactobacillus plantarum strains in 24‐well polystyrene microtiter plates and on the inactivation of 24‐hr and 72‐hr biofilms using quaternary ammonium compound‐, tertiary alkyl amine‐, and chlorine‐based disinfectants. Fluorescent in situ hybridization (FISH) and LIVE/DEAD BacLight staining were applied for 72‐hr L. innocua–L. plantarum mixed biofilms in the LabTek system for the species identification and the reaction of biofilm cells to disinfectants, respectively. L. monocytogenes/L. innocua were more resistant to disinfectants in 72‐hr than in 24‐hr biofilms, whereas L. plantarum strains did not show any significant differences between 72‐hr and 24‐hr biofilms. Furthermore, L. innocua when grown with L. plantarum was more resistant to all disinfection treatments, indicating a protective effect from lactobacilli in the mixed species biofilm. The biofilm formation and reaction to disinfectants, microscopically verified using fluorescence in situ hybridization and LIVE/DEAD staining, showed that L. innocua and L. plantarum form a dense mixed biofilm and also suggested the shielding effect of L. plantarum on L. innocua in the mixed species biofilm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call