Abstract
To use a biomechanical model to explore how impairment of the pubovisceral portion of the levator ani muscle, the apical vaginal suspension complex, or both might interact to affect anterior vaginal wall prolapse severity. A biomechanical model of the anterior vaginal wall and its support system was developed and implemented. The anterior vaginal wall and its main muscular and connective tissue support elements, namely the levator plate, pubovisceral muscle, and cardinal and uterosacral ligaments were included, and their geometry was based on midsagittal plane magnetic resonance scans. Material properties were based on published data. The change in the sagittal profile of the anterior vaginal wall during a maximal Valsalva was then predicted for different combinations of pubovisceral muscle and connective tissue impairment. Under raised intra-abdominal pressure, the magnitude of anterior vaginal wall prolapse was shown to be a combined function of both pubovisceral muscle and uterosacral and cardinal ligament ("apical supports") impairment. Once a certain degree of pubovisceral impairment was reached, the genital hiatus opened and a prolapse developed. The larger the pubovisceral impairment, the larger the anterior wall prolapse became. A 90% impairment of apical support led to an increase in anterior wall prolapse from 0.3 cm to 1.9 cm (a 530% increase) at 60% pubovisceral muscle impairment, and from 0.7 cm to 2.4 cm (a 240% increase) at 80% pubovisceral muscle impairment. These results suggest that a prolapse can develop as a result of impairment of the muscular and apical supports of the anterior vaginal wall.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.