Abstract

In virtue of the quantum invariant theory, we obtain the rigorous solution of the isotropic bipartite system in rotational magnetic fields, based on which the general expression of the noncyclic geometric phase is worked out and the entanglement dependence of the noncyclic geometric phase in this model is investigated. We show that the influence of the coupling on noncyclic geometric phase depends on the initial condition of the system. We also show that when the magnetic fields are stationary, there is a more general class of states existed of which the noncyclic geometric phase could be interpreted solely in terms of the solid angle enclosed by the geodesically closed curve on a two-sphere parameterized by the evolving Schmidt coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.