Abstract
The exact energies and wavefunctions for a system of (N − 1) one-dimensional fermions all of the same spin and one fermion of the opposite spin are calculated in the large volume, finite density limit, when the particles interact via an attractive delta function potential. It is found that the attractive potential gives rise to a bound state, but, in spite of the presence of this bound state, all of the physical properties which are calculated (ground-state energy, effective mass of a certain class of excitations, etc.) are analytic continuations in the coupling constant of the corresponding results in the repulsive case. In addition, it is possible to have eigenstates which do not have the bound state present. These excited states are also discussed and are found to exhibit a negative effective mass and to modify the particle density at very large distances from the different particle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have