Abstract
Ever-evolving healthcare applications have witnessed a surge in the utilization of electronic health records (EHR) for predicting future patient diagnoses. While Graph Neural Networks have demonstrated that promise in modeling disease-patient relationships, challenges arise from the sparsity and imbalance of patient and diagnostic data. Moreover, the existing models face difficulties in learning the unique disease combination features of patients. To address these challenges, we proposed a novel disease. prediction architecture based on Contrastive Learning (CL) from interstructural and intrasemantic perspectives, rather than traditional CL methods. We generated an initial global static disease graph to directly represent the relationships. among all diseases and a local dynamic disease graph to capture the indirect latent disease relationships among different patients. Multiple CL tasks were designed to learn sparse and imbalanced potentials. Relationships Between Diseases. Interstructure graph CL was first proposed to sample a graph enhancement, based on the distribution of nodes in the global disease graph. To further explore the deep embedding space of the disease, an intra-view graph CL was introduced by injecting noise at the semantic level for robust graph comparison. Experimental validation on two real EHR datasets demonstrates the superior performance of the approach by comparing it with state-of-the-art models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.