Abstract

Recently, graph neural networks (GNNs) have achieved promising results in session-based recommendation. Existing methods typically construct a local session graph and a global session graph to explore complex item transition patterns. However, studies have seldom investigated the repeat consumption phenomenon in a local graph. In addition, it is challenging to retrieve relevant adjacent nodes from the whole training set owing to computational complexity and space constraints. In this study, we use a GNN to jointly model intra- and inter-session item dependencies for session-based recommendations. We construct a repeat-aware local session graph to encode the intra-item dependencies and generate the session representation with positional awareness. Then, we use sessions from the current mini-batch instead of the whole training set to construct a global graph, which we refer to as the session-level global graph. Next, we aggregate the K-nearest neighbors to generate the final session representation, which enables easy and efficient neighbor searching. Extensive experiments on three real-world recommendation datasets demonstrate that RN-GNN outperforms state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call