Abstract

Changes of serum and extracellular ion concentrations occur regularly in patients with chronic kidney disease (CKD). Recently, hypocalcaemia, i.e. a decrease of the extracellular calcium concentration [Ca2+]o, has been suggested as potential pathomechanism contributing to the unexplained high rate of sudden cardiac death (SCD) in CKD patients. In particular, there is a hypothesis that hypocalcaemia could slow down natural pacemaking in the human sinus node to fatal degrees. Here, we address the question whether there are inter-species differences in the response of cellular sinus node pacemaking to changes of [Ca2+]o. Towards this end, we employ computational models of mouse, rabbit and human sinus node cells. The Fabbri et al. human model was updated to consider changes of intracellular ion concentrations. We identified crucial inter-species differences in the response of cellular pacemaking in the sinus node to changes of [Ca2+]o with little changes of cycle length in mouse and rabbit models (<; 83 ms) in contrast to a pronounced bradycardic effect in the human model (up to >1000 ms). Our results suggest that experiments with human sinus node cells are required to investigate the potential mechanism of hypocalcaemia-induced bradycardic SCD in CKD patients and small animal models are not well suited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.