Abstract

IntroductionSkater's cramp is a career-ending movement disorder in expert speed skaters noted to be a likely task-specific dystonia. In other movement disorders, including task-specific dystonia, studies have found evidence of central dysregulation expressed as higher inter-muscular coherence. We looked at whether inter-muscular coherence was higher in affected skaters as a possible indicator that it is centrally driven, and by extension further evidence it is a task-specific dystonia. MethodsIn 14 affected and 14 control skaters we calculated inter-muscular coherence in the theta-band in a stationary task where tonic muscle activation was measured at 10%, 20% and 50% of maximum voluntary contraction. Additionally, we calculated wavelet coherence while skating at key moments in the stroke cycle. ResultsCoherence did not differ in the stationary activation task. While skating, coherence was higher in the impacted leg of affected skaters compared to their non-impacted leg, p = .05, η2 = 0.031, and amplitude of electromyography correlated with coherence in the impacted leg, p = .009, R2adjusted = 0.41. A sub-group of severely affected skaters (n = 6) had higher coherence in the impacted leg compared to the left and right leg of controls, p = .02, Cohen's d = 1.59 and p = .01, Cohen's d = 1.63 respectively. Results were less clear across the entire affected cohort probably due to a diverse case-mix. ConclusionOur results of higher coherence in certain severe cases of skater's cramp is preliminary evidence of a central dysregulation, making the likelihood it is a task-specific dystonia higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call