Abstract
With the establishment by CODEX of a 200ng/g limit of inorganic arsenic (iAs) in polished rice grain, more analyses of iAs will be necessary to ensure compliance in regulatory and trade applications, to assess quality control in commercial rice production, and to conduct research involving iAs in rice crops. Although analytical methods using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) have been demonstrated for full speciation of As, this expensive and time-consuming approach is excessive when regulations are based only on iAs. We report a streamlined sample preparation and analysis of iAs in powdered rice based on heated extraction with 0.28M HNO3 followed by hydride generation (HG) under control of acidity and other simple conditions. Analysis of iAs is then conducted using flow-injection HG and inexpensive ICP-atomic emission spectroscopy (AES) or other detection means. A key innovation compared with previous methods was to increase the acidity of the reagent solution with 4M HCl (prior to reduction of As5+ to As3+), which minimized interferences from dimethylarsinic acid. An inter-laboratory method validation was conducted among 12 laboratories worldwide in the analysis of six shared blind duplicates and a NIST Standard Reference Material involving different types of rice and iAs levels. Also, four laboratories used the standard HPLC-ICP-MS method to analyze the samples. The results between the methods were not significantly different, and the Horwitz ratio averaged 0.52 for the new method, which meets official method validation criteria. Thus, the simpler, more versatile, and less expensive method may be used by laboratories for several purposes to accurately determine iAs in rice grain. Graphical abstract Comparison of iAs results from new and FDA methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have