Abstract

BackgroundBiomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment.MethodsConcentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored.ResultsAbout 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels.ConclusionThe use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure.

Highlights

  • Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population

  • Sampling comprised venous blood from the cubital vein (5 mL, Venoject II, EDTA(K2), VP-050SDK), red blood cells (RBC) and plasma (5 mL, Venoject II, EDTA(K2), VP-050SDK; Terumo Corp., Leuven; Belgium), hair, and urine

  • Fish consumption was positively correlated with total Hg (THg) in blood, RBC, and hair

Read more

Summary

Introduction

Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the interindividual variations and their suitability for exposure assessment. Target organs for elemental mercury vapour (Hg0) are the brain and kidney and the target organ for inorganic Hg compounds (IHg, Hg2+) is the kidney [1]. Both MeHg and Hg0, but not IHg, readily passes the blood-brain and placental barriers [1]. Dental amalgam fillings, releasing Hg0, are the major source of Hg0 exposure in the general population [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call