Abstract
In apartment houses, noise between floors can disturb pleasant living environments and cause disputes between neighbors. As a means of resolving disputes caused by inter-floor noise, noises are recorded for 24 hours in a household to verify whether the inter-floor noise exceeded the legal standards. If the noise exceeds the legal standards, the recorded sound is listened to, and it is checked whether the noise comes from neighboring households. When done manually, this process requires time and is costly, and there is a problem of whether the listener’s judgments of the sound source are consistent. This study aims to classify inter-floor noise according to noise sources by using a convolutional neural network model. A total of 1,515 sound sources of data recorded for 24 h from three households were annotated, and 40 4s audio clips of six noise sources, including “Footsteps,” “Dragging furniture,” “Hammering,” “Instant impact (dropping a heavy item),” “Vacuum cleaner,” and “Public announcement system” were identified. Moreover, datasets of 16 classes using ESC50’s urban sound category audio were used to distinguish the inter-floor noise heard indoors from the external noise. Although DenseNet, ResNet, Inception, and EfficientNet are models that use images as their domains, they showed an accuracy of 91.43–95.27% when classifying the inter-floor noise dataset. Among the reviewed models, ResNet showed an accuracy of 95.27±2.30% as well as a highest performance level in the F1 score, precision, and recall metrics. Additionally, ResNet showed the shortest inference time. This paper concludes by suggesting that the present findings can be extended in future research for monitoring acoustic elements of indoor soundscape.
Highlights
The noise transmitted owing to the behavior of a neighbor in an apartment building is a factor that impedes a pleasant living environment [1,2,3]
A noise measurement service records the noise heard in the lower unit for one day (24 h) and determines whether the noise exceeding the legal standard is generated by the neighboring household
When EfficientNet classifies the ImageNet dataset, the accuracy improves as the size of the model increases [37]
Summary
The noise transmitted owing to the behavior of a neighbor in an apartment building is a factor that impedes a pleasant living environment [1,2,3]. A noise measurement service records the noise heard in the lower unit for one day (24 h) and determines whether the noise exceeding the legal standard is generated by the neighboring household. The noise measurement results are used by the dispute mediation committee as the basis for determining whether it has exceeded the inter-floor noise standard and to calculate the compensation amount [9]. This method requires time and cost to determine the noise source, after listening to all recorded data manually. Less than 4.0% of people who file complaints use this service [11]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have