Abstract

AbstractAn analysis is presented of the precipitation bias and change signal in an ensemble of regional climate model (RCM) (RegCM4) projections driven by multiple general circulation models (GCMs) over China. RegCM4 is driven by five different GCMs for the 120‐year period 1979–2099 at 25 km grid spacing, under the representative concentration pathway RCP8.5. We find that the GCMs and RegCM4 reproduce the general spatial pattern of precipitation over China in all four seasons, with RegCM4 providing greater spatial detail, especially over areas with complex terrain. The spatial patterns of precipitation bias show common features between the GCMs and RegCM4, characterized by an underestimation in the wetter regions, and an overestimation in the drier ones. Systematic increases of precipitation are projected in northern China, most pronounced in the Northwest basins, by both the GCMs and RegCM4 in all seasons except summer, when more mixed results are found. In addition, weak correlations of the projected change patterns are found in summer between the GCMs and nested RegCM4, indicating the greater role played by the representation of local convection processes during this monsoon season. The projections across the RegCM4 experiments show higher consistency and lower spread compared to the GCM ensemble, again indicating that the nested model physics significantly modulates the change signal deriving from the GCM boundary forcing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call