Abstract

An inter-comparison of five models designed to predict the effect of ionizing radiation on populations of non-human wildlife, performed under the IAEA EMRAS II programme, is presented and discussed. A benchmark scenario 'Population response to chronic irradiation' was developed in which stable generic populations of mice, hare/rabbit, wolf/wild dog and deer were modelled as subjected to chronic low-LET radiation with dose rates of 0-5 × 10(-2) Gy day(-1) in increments of 10(-2) Gy day(-1). The duration of exposure simulations was 5 years. Results are given for the size of each surviving population for each of the applied dose rates at the end of the 1st to 5th years of exposure. Despite the theoretical differences in the modelling approaches, the inter-comparison allowed the identification of a series of common findings. At dose rates of about 10(-2) Gy day(-1) for 5 years, the survival of populations of short-lived species was better than that of long-lived species: significant reduction in large mammals was predicted whilst small mammals survive at 80-100 % of the control. Dose rates in excess of 2 × 10(-2) Gy day(-1) for 5 years produced considerable reduction in all populations. From this study, a potential relationship between higher reproduction rates and lower radiation effects at population level can be hypothesized. The work signals the direction for future investigations to validate and improve the predictive ability of different population dose effects models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.