Abstract

The basic principles underlying a four-discrete age group, logistic, growth model for the European lobster Homarus gammarus are presented and discussed at proof-of-concept level. The model considers reproduction, removal by predation, natural death, fishing, radiation and migration. Non-stochastic effects of chronic low linear energy transfer (LET) radiation are modelled with emphasis on (99)Tc, using three endpoints: repairable radiation damage, impairment of reproductive ability and, at higher dose rates, mortality. An allometric approach for the calculation of LD(50/30) as a function of the mass of each life stage is used in model calibration. The model predicts that at a dose rate of 1 Gy day(-1), lobster population reproduction and survival become severely compromised, leading eventually to population extinction. At 0.01 Gy day(-1), the survival rate of an isolated population is reduced by 10%, mainly through loss of fecundity, comparable to natural migration losses. Fishing is the main ecological stress and only dose rates in the range 0.03-0.1 Gy day(-1) can achieve discernible effects above it. On the balance of radiation and other ecological stresses, a benchmark value of 0.01 Gy day(-1) is proposed for the protection of lobster populations. This value appears consistent with available information on radiation effects in wildlife.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.