Abstract
To assess the effect of intensive statins therapy on the outcome of small-diameter vascular prosthesis, we investigated whether atorvastatin treatment (30 mg/d) could accelerate the re-endothelialization process and improve the patency rate in a canine infrarenal abdominal aorta-expanded polytetrafluoroethylene (ePTFE) bypass model. Furthermore, we also evaluated the effect of atorvastatin on the migratory and adherent capacity of circulating endothelial progenitor cells (EPCs) in vitro. Improved patency was confirmed by Doppler sonography and arteriography. Histological and scanning electron microscopy illustrated enhanced re-endothelialization process. Treatment with atorvastatin enhanced the circulating pool of EPCs with fortified migratory and adherent capacity. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that atorvastatin treatment increased endothelial nitric oxide synthase (eNOS) and kinase insert domain receptor (KDR) messenger RNA (mRNA) expression in cultured EPCs and neointima. In conclusion, intensive statin therapy could be considered a favorable option to improve small-diameter vascular graft patency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have