Abstract

Stroke is a leading cause of long-term disability. While major advances have been made in early intervention for the treatment of patients post stroke, the majority of survivors have residual mobility challenges. Recovery of motor function is dependent on the interrelationship between dosing, intensity, and task specific practice applied during rehabilitation. Robotic exoskeleton (RE) based gait training utilizes progressive repetitive task-oriented movements to promote functional recovery. The purpose of this investigation was to demonstrate the utilization of intensity modulated exoskeleton gait training on functional outcomes and walking speed post stoke. Preliminary data is presented for individuals diagnosed with stroke who received RE gait training. The intensity modulated RE gait training was delivered by a physical therapist and participants trained at 75-85% of calculated max heart rates at each session, over 10 weeks (30 sessions). After 10 weeks of training participants increased walking speed (10 meter walk test) and functional measures (timed up and go, berg balance assessment, dynamic gait index and functional ambulation category). These preliminary results demonstrate the utilization of intensity modulated gait training for improved functional ambulation and motor recovery using a robotic exoskeleton overground gait training post stroke.Clinical Relevance- Preliminary data provides initial evidence for intensity modulated exoskeleton gait training as a therapeutic intervention post stroke. More research is needed to demonstrate the potential relationships between intensity based gait training, exoskeletons and improved functional ambulation in post stroke rehabilitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.