Abstract

This study aimed to evaluate the dose modulation potential of static and dynamic steel-shielded applicators using the Geant4 Application for Emission Tomography (GATE) Monte Carlo code for the treatment of vaginal cancer. The GATE TOOLKIT (version 9.0) was used to simulate vaginal cancer intensity-modulated brachytherapy (IMBT) in a pelvic water-equivalent phantom. IMBT performance of a multichannel static and single-channel dynamic steel-shielded applicator was compared to that of a conventional multichannel Plexiglas applicator. DoseActors were defined to calculate the absorbed dose and attached to the voxelized target and organs at risk (OARs). 60Co and 192Ir high-dose-rate seeds were used as irradiation sources. Dynamic IMBT decreased the D2cc of the rectum and bladder by 28.67 and 28.11% using the 60Co source and by 40.00 and 36.34% using the 192Ir source, respectively. Static IMBT decreased the D2cc for the rectum and bladder by 11.69 and 9.29% using the 60Co source and by 22.21 and 17.71% using the 192Ir source, respectively. In contrast, absorbed dose parameters (D5, D90, and D100) for the target in the three techniques showed a mean relative variation of 0.96% (0.00-7.49%) for both sources. Static and dynamic IMBT using steel-shielded applicators provided relatively better OAR protection while maintaining similar target coverage in the treatment of vaginal cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call