Abstract

Basilar-membrane and auditory-nerve responses to impulsive acoustic stimuli, whether measured directly in response to clicks or obtained indirectly using cross- or reverse-correlation and/or Fourier analysis, manifest a striking symmetry: near-invariance with stimulus intensity of the fine time structure of the response over almost the entire dynamic range of hearing. This paper explores the origin and implications of this symmetry for cochlear mechanics. Intensity-invariance is investigated by applying the EQ-NL theorem [de Boer, Aud. Neurosci. 3, 377-388 (1997)] to define a family of linear cochlear models in which the strength of the active force generators is controlled by a real-valued, intensity-dependent parameter, gamma (with 0 < or = gamma < or = 1). The invariance of fine time structure is conjectured to imply that as gamma is varied the poles of the admittance of the cochlear partition remain within relatively narrow bands of the complex plane oriented perpendicular to the real frequency axis. Physically, the conjecture implies that the local resonant frequencies of the cochlear partition are nearly independent of intensity. Cochlear-model responses, computed by extending the model obtained by solution of the inverse problem in squirrel monkey at low sound levels [Zweig, J. Acoust. Soc. Am. 89, 1229-1254 (1991)] with three different forms of the intensity dependence of the partition admittance, support the conjecture. Intensity-invariance of cochlear resonant frequencies is shown to be consistent with the well-known "half-octave shift," describing the shift with intensity in the peak (or best) frequency of the basilar-membrane frequency response. Shifts in best frequency do not arise locally, via changes in the underlying resonant frequencies of the partition, but globally through the intensity dependence of the driving pressure. Near-invariance of fine time structure places strong constraints on the mechanical effects of force generation by outer hair cells. In particular, the symmetry requires that the feedback forces generated by outer hair cells (OHCs) not significantly affect the natural resonant frequencies of the cochlear partition. These results contradict many, if not most, cochlear models, in which OHC forces produce significant changes in the reactance and resonant frequencies of the partition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.