Abstract

As optical coherence tomography (OCT) has increasingly become a standard modality for imaging the retina, automated algorithms for processing OCT data have become necessary to do large scale studies looking for changes in specific layers. To provide accurate results, many of these algorithms rely on the consistency of layer intensities within a scan. Unfortunately, OCT data often exhibits inhomogeneity in a given layer's intensities, both within and between images. This problem negatively affects the performance of segmentation algorithms and little prior work has been done to correct this data. In this work, we adapt the N3 framework for intensity inhomogeneity correction, which was originally developed to correct MRI data, to work for macular OCT data. We first transform the data to a flattened macular space to create a template intensity profile for each layer giving us an accurate initial estimate of the gain field. N3 will then produce a smoothly varying field to correct the data. We show that our method is able to both accurately recover synthetically generated gain fields and improves the stability of the layer intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.