Abstract

BackgroundThe performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for the diagnosis of glaucoma using Artificial Neural Networks (ANNs).MethodsHumphrey 24-2 SITA standard SAP and StratusOCT tests were prospectively collected from a randomly selected population of 125 healthy persons and 135 patients with glaucomatous optic nerve heads and used as input for the ANNs. We tested commercially available standard parameters as well as novel ones (fused OCT and SAP data) that exploit the spatial relationship between visual field areas and sectors of the OCT peripapillary scan circle. We evaluated the performance of these SAP and OCT derived parameters both separately and in combination.ResultsThe diagnostic accuracy from a combination of fused SAP and OCT data (95.39%) was higher than that of the best conventional parameters of either instrument, i.e. SAP Glaucoma Hemifield Test (p < 0.001) and OCT Retinal Nerve Fiber Layer Thickness ≥ 1 quadrant (p = 0.031). Fused OCT and combined fused OCT and SAP data provided similar Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978 that were significantly larger (p = 0.047) compared to ANNs using SAP parameters alone (AROC = 0.945). On the other hand, ANNs based on the OCT parameters (AROC = 0.970) did not perform significantly worse than the ANNs based on the fused or combined forms of input data. The use of fused input increased the number of tests that were correctly classified by both SAP and OCT based ANNs.ConclusionsCompared to the use of SAP parameters, input from the combination of fused OCT and SAP parameters, and from fused OCT data, significantly increased the performance of ANNs. Integrating parameters by including a priori relevant information through data fusion may improve ANN classification accuracy compared to currently available methods.

Highlights

  • The performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis

  • We evaluated the agreement in classification between the Optical Coherence Tomography (OCT) and Standard Automated Perimetry (SAP) based Artificial Neural Networks (ANNs) by calculating odds ratios, which in this case signified the odds that tests classified by the SAP-based ANN receive the same classification by the OCT-based ANN, based on the same classification threshold of 0.5 for both OCT and SAP based classifiers

  • The two ANNs with input based on the fused OCT and the combined fused OCT and SAP data respectively provided almost identical Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978, performing significantly better than the ANN based on the SAP measurements alone

Read more

Summary

Introduction

The performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for the diagnosis of glaucoma using Artificial Neural Networks (ANNs). Investigating the relationship between development of functional damage in the visual field and structural glaucomatous changes of the retinal nerve fiber layer (RNFL) has been the purpose of numerous studies [1,2,3,4,5]. Imaging and quantitative analysis of RNFL measurements can be accomplished with Optical Coherence Tomography (OCT). The diagnostic performance of both OCT and SAP in glaucoma as well as the correlation between SAP and OCT measurements has been investigated [12,13,14,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call