Abstract
For millennia, plants have been a source of natural medicines used by humankind. In vitro cultures of plant organs, e.g., transgenic roots, provide a suitable environment for maintaining plant biomass and continuously producing plant-derived bioproducts. The in vitro cultures of plant biomass can be efficiently scaled up using disposable bioreactors with wave-type agitation conditions. The study aimed to investigate the influence of wave-type agitation conditions supported by the WAVE 25 bioreactor on biomass proliferation and secondary metabolite production offered by the in vitro system of Rindera graeca transgenic root culture. Two morphologically different pellets of R. graeca biomass have been observed: highly ramified for cultures performed at ReL < 4000 and compacted for cultures performed at ReL > 5200. The growth of transgenic root biomass cultured in the WAVE 25 bioreactor at ReL = 1325 was over two times higher than for cultures performed in small-scale systems of oscillatory shaken Erlenmeyer flasks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have