Abstract

A laboratory flow reactor (Vr=9.5mL) with a high shear mixer was used to study the intensification of extraction and stripping. The stirring rate was 15,000rpm and the reactor space-time was varied from 1.3 to 13s in extraction experiments. The phases were separated with an in-line centrifuge. Results were compared to those made in batch reactor (Vr=7.7L) equipped with conventional pitched-blade turbine impeller. The residence time and drop size distributions of flow reactor were measured. Copper extraction was made from sulfate solution using a hydroxyoxime reagent (LIX 984). Both extraction and stripping reached equilibrium in a few seconds in the flow reactor, while the same required about 250s in the batch reactor. Residence time distribution was utilized in the model of extraction kinetics. Calculated pseudohomogeneous extraction kinetic constants of the flow reactor and the batch reactor were 5.9 and 0.034Lmol−1s−1, respectively. Difference was over 150-fold. Measured drop size distributions indicate that differences in generated interfacial area can explain only a part of rate increase. Such dramatic intensification of extraction in flow reactor is interpreted here to be due to both increased interfacial area and decreased diffusion path length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.