Abstract

In this work, intense pulsed light (IPL) sintering process was investigated with vacuum stretching and heating of the polymer substrate for warpage free printed electronics circuit. The IPL irradiation energy and substrate heating temperature were optimized to obtain high electrical conductivity, high adhesion strength, and little warpage of printed Cu electrodes pattern on the polyimide (PI) substrate. Scanning electron microscopy and x-ray diffraction were conducted to characterize microstructure and transformation crystal phase of the IPL sintered Cu nanoparticle (NP)/microparticle (MP)-ink film. The resistivity of IPL sintered Cu NP/MP-ink films was measured using the four-point probe method and profilometer. In order to monitor IPL sintering process, in-situ resistance and temperature monitoring of Cu NP/MP-ink were conducted. Also, a transient heat transfer analysis was performed using finite-element analysis software to predict temperature gradients of Cu NP/MP-ink and polymer substrate during IPL light sintering process. As a result, the optimal IPL light sintered Cu NP/MP-ink film (vacuum applied, 150 °C heating, and irradiation energy: 3.5 J/cm2) had a low resistivity 6.94 μΩ·cm and 5 B level of adhesion strength with almost no warpage of PI substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call