Abstract

Conventional GNSS positioning in dense urban areas can exhibit errors of tens of meters due to blockage and reflection of signals by the surrounding buildings. Here, we present a full implementation of the intelligent urban positioning (IUP) 3D-mapping-aided (3DMA) GNSS concept. This combines conventional ranging-based GNSS positioning enhanced by 3D mapping with the GNSS shadow-matching technique. Shadow matching determines position by comparing the measured signal availability with that predicted over a grid of candidate positions using 3D mapping. Thus, IUP uses both pseudorange and signal-to-noise measurements to determine position. All algorithms incorporate terrain-height aiding and use measurements from a single epoch in time. Two different 3DMA ranging algorithms are presented, one based on least-squares estimation and the other based on computing the likelihoods of a grid of candidate position hypotheses. The likelihood-based ranging algorithm uses the same candidate position hypotheses as shadow matching and makes different assumptions about which signals are direct line-of-sight (LOS) and non-lineof-sight (NLOS) at each candidate position. Two different methods for integrating likelihood-based 3DMA ranging with shadow matching are also compared. In the positiondomain approach, separate ranging and shadow-matching position solutions are computed, then averaged using direction-dependent weighting. In the hypothesis-domain approach, the candidate position scores from the ranging and shadow matching algorithms are combined prior to extracting a joint position solution. Test data was recorded using a u-blox EVK M8T consumer-grade GNSS receiver and a HTC Nexus 9 tablet at 28 locations across two districts of London. The City of London is a traditional dense urban environment, while Canary Wharf is a modern environment. The Nexus 9 tablet data was recorded using the Android Nougat GNSS receiver interface and is representative of future smartphones. Best results were obtained using the likelihood-based 3DMA ranging algorithm and hypothesis-based integration with shadow matching. With the u-blox receiver, the single-epoch RMS horizontal (i.e., 2D) error across all sites was 4.0 m, compared to 28.2 m for conventional positioning, a factor of 7.1 improvement. Using the Nexus tablet, the intelligent urban positioning RMS error was 7.0 m, compared to 32.7 m for conventional GNSS positioning, a factor of 4.7 improvement. An analysis of processing and data requirements shows that intelligent urban positioning is practical to implement in real-time on a mobile device or a server.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.