Abstract

This study presents a self-evolving probabilistic fuzzy (PF) neural network with asymmetric membership function (SPFNN-AMF) controller for the position servo control of a permanent magnet linear synchronous motor (PMLSM) servo drive system. In the beginning, the dynamic model for the PMLSM is analysed on the basis of field-oriented control. Subsequently, an SPFNN-AMF control system, which integrates the advantages of self-evolving NN, PF logic system, and AMF, is proposed to handle vagueness, randomness, and time-varying uncertainties of the PMLSM servo drive system during the control process. For the SPFNN-AMF, the proposed learning algorithm consists of the structure learning and parameter learning in which the former is used to grow and prune the fuzzy rules automatically, whereas the latter is utilised to train the network parameters dynamically. Finally, detailed experimental results of two position commands tracking at different operation conditions demonstrate the validity and robustness of the proposed SPFNN-AMF for controlling the PMLSM servo drive system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call