Abstract

Abstract Controller design for an Anti-Lock Braking System (ABS) of a Hybrid Electric Vehicle (HEV) or Electric Vehicle (EV) is a challenging task because of the trade-off between braking efficiency and energy recuperation efficiency. In hybrid vehicles, the brake torque demand is met by both the conventional friction braking system and an electric Regenerative Braking System (RBS). Hence, an effective ABS controller is required to achieve high braking efficiency without losing energy recuperation efficiency. This paper presents an Intelligent Sliding Mode Scheme (ISMS) to retain high energy recuperation efficiency as well as good braking efficiency of an EV with a unique braking configuration. The ISMS has a supervisory logic based motor torque limiter and slip controller. The slip controller is designed based on a two-wheeled model which has a hydraulic unit at the front producing frictional braking cooperating with a regenerative braking system with a brake-by-wire unit at the rear wheels. The slip controller is designed considering the hydraulics and motor actuator dynamics and the complete Magic Formula (MF) is used for tyre force estimation. The logic-based torque limiter not only regulates the brake torque to follow an assigned brake force distribution but also ensures that the battery is not overcharged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call