Abstract

This paper considers the control of an active suspension system (ASS) for a quarter car model based on the fusion of robust control and computational intelligence techniques. The objective of designing a controller for the car suspension system is to improve the ride comfort while maintaining the constraints on to the suspension travel and tire deformation subjected to different road profile. However, due to the mismatched uncertainty in the mathematical model of the ASS, sliding mode control (SMC) cannot be applied directly to control the system. Thus, the purpose of this work is to adapt the SMC technique for the control of ASS, where particle swarm optimization (PSO) algorithm is utilized to design the sliding surface such that the effect of the mismatched uncertainty can be minimized. The performance of the proposed sliding mode controller based on the PSO algorithm is compared with the linear quadratic optimal control (LQR) and the existing passive suspension system. In comparison with the other control methods, the simulation results demonstrate the superiority of the proposed controller, where it significantly improved the ride comfort 67% and 25% more than the passive suspension system and the LQR controller, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.