Abstract

Guilin is situated in the southern part of China with abundant rainfall. There are 137 reservoirs, which are widely used for irrigation, flood control, water supply and power generation. However, there has been a lack of systematic and full-coverage remote sensing monitoring of reservoir dams for a long time. According to the latest public literature, high-resolution unmanned aerial vehicle (UAV) remote sensing has not been used to detect changes on the reservoir dams of Guilin. In this paper, an intelligent segmentation change detection method is proposed to complete the detection of dam change based on multitemporal high-resolution UAV remote sensing data. Firstly, an enhanced GrabCut that fuses the linear spectral clustering (LSC) superpixel mapping matrix and the Sobel edge operator is proposed to extract the features of reservoir dams. The edge operator is introduced into GrabCut to redefine the new energy function’s smooth item, which makes the segmentation results of enhanced GrabCut more robust and accurate. Then, through image registration, the multitemporal dam extraction results are unified to the same coordinate system to complete the difference operation, and finally the dam change results are obtained. The experimental results of two representative reservoir dams in Guilin show that the proposed method can achieve a very high accuracy of change detection, which is an important reference for related research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.