Abstract

In recent years, China has been undergoing a metro railway construction boom in order to alleviate the urban traffic congestion problem resulting from the rapid urbanization and population growth in many metropolises. In the construction of metro systems, deep excavations and continuous dewatering for construction of the metro tunnels and stations remain a challenging and high risk task in densely populated urban areas. Intelligent computational methods and techniques have exhibited the exceptional talent in dealing with the complicated problems inherent in the deep excavation and dewatering practice. In this paper, an intelligent risk assessment system for deep excavation dewatering is developed and has been applied in the project of Hangzhou Metro Line 1 which is the first metro line of the urban rapid rail transit system in Hangzhou, China. The specific characteristics and great challenges in deep excavation dewatering of the metro‐tunnel airshaft of Hangzhou Metro Line 1 are addressed. A novel design method based on the coupled three‐dimensional flow theory for dewatering of the deep excavation is introduced. The modularly designed system for excavation dewatering risk assessment is described, and the field observations in dewatering risk assessment of the airshaft excavation of Hangzhou Metro Line 1 are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.