Abstract

A pneumatic actuator system is considered extremely nonlinear, making accurate position control of this actuator difficult to obtain. In this article, a novel cascade fractional-order PID (CFOPID) controller for the intelligent pneumatic actuator (IPA) positioning system utilizing particle swarm optimization (PSO) is presented. The pneumatic system was modeled using the system identification (SI) technique. To demonstrate the effectiveness of the CFOPID controller, a comparison to the FOPID controller is performed based on the rise, settling, and peak times, peak overshoot, and integral of square error (ISE). From the results obtained, the proposed CFOPID controller provides superior control over the FOPID controller. For the application of the position controller, the proposed system incorporates an intelligent pneumatic actuated ball and beam (IPABB) system. The mathematical model of the system was developed and validated through a simulation utilizing a PID (outer loop) and CFOPID controller (inner loop). The suggested controller’s accuracy and robustness have been studied by a comparative examination of the results obtained utilizing the proposed and other prior controllers on the same system. The results indicate that the intelligent pneumatic actuator, when coupled with a CFOPID controller, is capable of controlling the positioning of the ball and beam system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.