Abstract

To further improve the operational performance of a phononic crystal air-coupled ultrasonic transducer while reducing the number of simulations, an intelligent optimization design strategy is proposed by combining finite element simulation analysis and artificial intelligence (AI) methods. In the proposed strategy, the structural design parameters of 1-3 piezoelectric composites and acoustic impedance gradient matching layer are sampled using the optimal Latin hypercube sampling (OLHS) method. Moreover, the COMSOL software is utilized to calculate the performance parameters of the transducer. Based on the simulation data, a radial basis function neural network (RBFNN) model is trained to establish the relationship between the design parameters and the performance parameters. The accuracy of the approximation model is verified through linear regression plots and statistical methods. Finally, the NSGA-II algorithm is used to determine the design parameters of the transducer. After optimization, the band gap widths of the piezoelectric composites and acoustic impedance gradient matching layer are increased by 16 kHz and 13.5 kHz, respectively. Additionally, the -6 dB bandwidth of the transducer is expanded by 11.5%. The simulation results and experimental results are consistent with the design objectives, which confirms the effectiveness of the design strategy. This work provides a feasible strategy for the design of high-performance air-coupled ultrasonic transducers, which is of great significance for the development of non-destructive testing technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call