Abstract
The 5th generation (5G) communications evolved with heterogeneous user terminals and applications. A convergence of Mobile Edge Computing (MEC) and Software-Defined Networks (SDN) delivers gigantic challenges and opportunities for enhancing computing resources and user Quality of Service (QoS) in fronthaul and backhaul networks. Due to the precipitous expansion of user media in the 5G epoch, efficient media forensics methods are mandatory for specifying and offering effective safety handling based on individual application requirements. According to the exponential increment of Heterogeneous Internet of Things (HetIoT) devices, gigantic traffic will generate through bottleneck 5G fronthaul gateways. 5G fronthaul network environments consist of inadequate resources to surmount the enormous user traffic and communications, QoS will be reduced when the existence of traffic congestion occurs. To confront the aforementioned issues, this paper proposed intelligent media forensics and traffic handling scheme for controlling the Uplink (UL) transmission according to the Downlink (DL) statuses. Support Vector Machine (SVM) algorithm was applied to conduct the media forensics and MEC server integrated into fronthaul gateways, in which gateways resources are divided into UL and DL. Caching technology will be a part of 5G environments, and DL will be utilized for traffic caching. So, it is compulsory to adjust the communication traffic according to UL/DL resource utilization and control the forwarding traffic which relies on resource availability. The experiment was conducted by using computer software, and the proposed scheme illustrated a noteworthy outperformance over the conventional method in terms of diverse significant QoS factors including reliability, latency, and communication throughput.
Highlights
Academic Editor: Jinwei Wang e 5th generation (5G) communications evolved with heterogeneous user terminals and applications
To overcome the 5G heterogeneous communications and enable both trustfulness and Quality of Service (QoS) for 5G communication media, this paper proposed a media forensics method based on lightweight Machine Learning (ML), namely, Support Vector Machine (SVM), for differentiating the media contents
To guarantee safe media accessibility and capability of executive QoS for a particular user data exchange, the prerequisite of differentiating the media manners is necessitated to fulfill. is paper presented the efficient data slicing based on lightweight ML for 5G/6G media forensics perspectives
Summary
Received 21 January 2021; Revised 19 March 2021; Accepted 9 April 2021; Published 21 April 2021. A convergence of Mobile Edge Computing (MEC) and Software-Defined Networks (SDN) delivers gigantic challenges and opportunities for enhancing computing resources and user Quality of Service (QoS) in fronthaul and backhaul networks. 5G fronthaul network environments consist of inadequate resources to surmount the enormous user traffic and communications, QoS will be reduced when the existence of traffic congestion occurs. To confront the aforementioned issues, this paper proposed intelligent media forensics and traffic handling scheme for controlling the Uplink (UL) transmission according to the Downlink (DL) statuses. Support Vector Machine (SVM) algorithm was applied to conduct the media forensics and MEC server integrated into fronthaul gateways, in which gateways resources are divided into UL and DL. Security methods for edge networks are obligatory to guarantee secure communications of gigantic user applications and media [1]. Time-sensitive networks carry huge Packet Data Unit (PDU) sizes, so the big data transmission will have to be handled in the end-to-end (E2E) communications. 5G Radio Access Network (5GRAN) environments are installed by Millimeter-Wave (mm-Wave) technology, and massive Radio Remote Head (RRH) supports Multiple-Input Multiple-
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have