Abstract

Presented are new definitions and interpretations for smartness and intelligence associated with materials, structures, and material systems (MS & MS). These newly proposed definitions complement and augment the present notion of smart and/or intelligent materials, structures and material systems, as accepted by our scientific community. These new definitions numerically quantify the concepts of smartness and intelligence for materials, structures and material systems. In this context amino acid sequences and structures such as proteins are proposed to be the smartest material family and are given an MSQ of 1000. Correspondingly, ribonucleic acid sequences such as RNA and DNA macromolecular assemblies and structures are proposed to be the most intelligent material family and are given an MIQ of 1000. In the same category the proteins are given an MIQ of about 700. Ionic polymeric gels, shape memory alloys, electromagnetic (electrostrictive, piezoelectric, ferroelectric, ferromagnetic) materials, electrorheological fluids and magnetorheological fluids are then categorized under this hierarchy of smart/intelligent materials with MSQs and MIQs of smaller values. A similar classification is also applied to smart/intelligent structures with reference to simple cells such as bacteria and viruses such as T4 Bacteriophages. A number of examples are presented and the corresponding MSQs and MIQs are estimated to show that materials, structure and material systems can truly be numerically categorized in connection with their smartness and intelligence and thus be compared with biological and botanical structures and material systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call