Abstract

Due to its damage to Internet security, malware and its detection has caught the attention of both anti-malware industry and researchers for decades. Many research efforts have been conducted on developing intelligent malware detection systems. In these systems, resting on the analysis of file contents extracted from the file samples, like Application Programming Interface (API) calls, instruction sequences, and binary strings, data mining methods such as Naive Bayes and Support Vector Machines have been used for malware detection. However, driven by the economic benefits, both diversity and sophistication of malware have significantly increased in recent years. Therefore, anti-malware industry calls for much more novel methods which are capable to protect the users against new threats, and more difficult to evade. In this paper, other than based on file contents extracted from the file samples, we study how file relation graphs can be used for malware detection and propose a novel Belief Propagation algorithm based on the constructed graphs to detect newly unknown malware. A comprehensive experimental study on a real and large data collection from Comodo Cloud Security Center is performed to compare various malware detection approaches. Promising experimental results demonstrate that the accuracy and efficiency of our proposed method outperform other alternate data mining based detection techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.