Abstract
The proliferation of malware has presented a serious threat to the security of computer systems. Traditional signature-based anti-virus systems fail to detect polymorphic/metamorphic and new, previously unseen malicious executables. Data mining methods such as Naive Bayes and Decision Tree have been studied on small collections of executables. In this paper, resting on the analysis of Windows APIs called by PE files, we develop the Intelligent Malware Detection System (IMDS) using Objective-Oriented Association (OOA) mining based classification. IMDS is an integrated system consisting of three major modules: PE parser, OOA rule generator, and rule based classifier. An OOA_Fast_FP-Growth algorithm is adapted to efficiently generate OOA rules for classification. A comprehensive experimental study on a large collection of PE files obtained from the anti-virus laboratory of KingSoft Corporation is performed to compare various malware detection approaches. Promising experimental results demonstrate that the accuracy and efficiency of our IMDS system outperform popular anti-virus software such as Norton AntiVirus and McAfee VirusScan, as well as previous data mining based detection systems which employed Naive Bayes, Support Vector Machine (SVM) and Decision Tree techniques. Our system has already been incorporated into the scanning tool of KingSoft’s Anti-Virus software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.