Abstract
Knowledge graph (KG) as a popular semantic network has been widely used. It provides an effective way to describe semantic entities and their relationships by extending ontology in the entity level. This article focuses on the application of KG in the traditional geological field and proposes a novel method to construct KG. On the basis of natural language processing (NLP) and data mining (DM) algorithms, we analyze those key technologies for designing a KG towards geological data, including geological knowledge extraction and semantic association. Through this typical geological ontology extracting on a large number of geological documents and open linked data, the semantic interconnection is achieved, KG framework for geological data is designed, application system of KG towards geological data is constructed, and dynamic updating of the geological information is completed accordingly. Specifically, unsupervised intelligent learning method using linked open data is incorporated into the geological document preprocessing, which generates a geological domain vocabulary ultimately. Furthermore, some application cases in the KG system are provided to show the effectiveness and efficiency of our proposed intelligent learning approach for KG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.