Abstract
In this paper, an existing rule-based intrusion detection system (IDS) is made more intelligent through the application of machine learning. Snort was chosen as it is an open source software and though it was performing well, it showed false positives (FPs). To find the best performing machine learning algorithms (MLAs) to use with Snort so as to improve its detection, we tested some algorithms on three available datasets. Support vector machine (SVM) was chosen along with fuzzy logic and decision tree based on their accuracy. Combined versions of algorithms through ensemble SVM along with other variants were tried on the generated traffic of normal and malicious packets at 10[Formula: see text]Gbps. Optimized versions of the SVM along with firefly and ant colony optimization (ACO) were also tried, and the accuracy improved remarkably. Thus, the application of combined and optimized MLAs to Snort at 10[Formula: see text]Gbps worked quite well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.