Abstract
The ability to incorporate original and adapted data into query-based storage structures to provide dynamic and timely service to sequence recommendation systems is a continuous goal of learning management systems. This can be a challenging goal when data integrity and student privacy are paramount. We are developing a hybrid machine learning-assisted system (CyberTaliesin) for cybersecurity educational support. In this poster, we present the early building blocks of the system involving the use of federated knowledge graphs as a trusted knowledge source capable of learning from “less restricted” models such as large language models. How can integrating these tools yield a flexible system that improves sequence recommendations, facilitates concepts such as adaptive and personalized learning, and achieves improved competency-based educational outcomes?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.